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Abstract —In this paper, we describe a new boundary representation
for the two-dimensional transmission line matrix method of numerical
analysis (TLM). In conventional TLM simulations, boundary conditions
are realized by introducing the appropriate impulse reflection coeffi-
cients halfway between two nodes. Since the total field quantities are
defined on the nodes, their values at the boundary are not directly
available from TLM solutions. We have thus modified the TLM proce-
dure so that boundaries can be placed across the nodes. The boundary
conditions in TLM can then be formulated in terms of the field bound-
ary conditions derived from Maxwell’s equations, rather than in terms
of impulse reflection coefficients, The essential differences between the
conventional TLM and our proposed procedure are presented. Examples
are given for several typical problems, and the results obtained with the
two methods are compared. These were found to be in excellent agree-
ment.

1. INTRODUCTION

HE theory of the two-dimensional TLM and its applica-

tion to electromagnetic problems have been well estab-
lished [1]-[5] since its formulation by Johns and his cowork-
ers. Electromagnetic fields are modeled by fiiling the field
space with a network of transmission lines; this renders the
problem discrete in space and time since impulses launched
on the network are scattered at all nodes at a fixed time step
sequence. The voltages and currents at all nodes are equiva-
lent to the electric and magnetic fields in the discretized
space. Thus the behavior of electromagnetic fields can be
easily modeled quantitatively by the voltages and currents in
the appropriate TLM models. This makes the TLM method
a very powerful numerical technique for solving electromag-
netic problems with computers.

In the two-dimensional TLM network shown in Fig. 1,
traditional boundary conditions are realized by placing the
boundaries halfway between two nodes and modeling them
by appropriate reflection and transmission coefficients. A
wide range of problems have been solved successfully with
this boundary description [1]-[3]. However, since the closest
nodes are Al /2 away from the boundaries and since fields
are defined at the nodes, the field quantities on the bound-
aries cannot be obtained directly from the TLM solutions.

This paper introduces a technique by which the bound-
aries are placed across the nodes rather than halfway be-
tween them. Therefore, the boundary conditions can be
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Fig. 1. The placement of a traditional and of the newly proposed

boundary in TLM network.

formulated in terms of the total fields governed by Maxwell’s
equations, rather than in terms of impulse reflection and
transmission coefficients. This makes the boundary descrip-
tion in TLM compatible with that of other numerical meth-
ods and analytical approaches, even though the modeling of
wave propagation is governed by Huygens’s principle. The
new boundary description proposed in this paper thus facili-
tates the combination of TLM with other methods such as
analytical and finite difference approaches for absorbing
boundary modeling. Finally, one can also use it in combina-
tion with the conventional TLM boundary scheme, thus
doubling the resolution of TLM boundary treatment.

II. Tue New TLM BounpaRrRYy DEscrIPTION

From Maxwell’s equations, the following general field
boundary conditions are derived:

1) On a perfect reflecting wall C (Fig. 2), the electric and
magnetic fields must satisfy the following conditions:

nxXE=0 n
n-H=90 2)
if C is an electric wall, and
nxH=0 (3)
nE=0 4)

if C is a magnetic wall.
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Fig. 3. An interface between two dielectric regions.

2) On the interface I between the two dielectric regions
(Fig. 3), the electric and magnetic fields must satisfy the
following conditions:

E =E, (5)
Htl HIZ (6)

In a TLLM model, the voltages and currents at the nodes
are equivalent to the electric and magnetic fields in the
real structure. Therefore, by imposing the above ficld
boundary conditions upon the voltages and currents on the
boundary or interface nodes of the TLM model, the new
boundary representation can be easily obtained. In the
following section, this procedure will be discussed for the
case of two-dimensional TLM shunt-connected networks.

A. Representation of Perfect Electric Walls

Consider the empty half-space bounded by a perfect elec-
tric wall to the y—z plane, as shown in Fig. 4(a). Assuming
that d /dy = 0, we can model this half-space by a shunt-con-
nected 2-D TLM mesh in which the node voltage, V,, simu-
lates the y component of the electric field, E,, (Fig. 4b)). In
contrast to the conventional arrangement, the mesh position
is such that a row of nodes coincides with the electric wall.

The boundary condition, E, =0, is now simulated by nu-
merically forcing V), to vanish at each iteration at all bound-
ary nodes. Referring to Fig. 4(c), the value of V, at the kth
iteration is [5]

1 .
V=5 (Vs +i) =0
(at the boundary nodes) (7)

where V' is the incident voltage on the jth branch of the
node on the boundary at the kth iteration.

Since in this case, V7, (V4, and ,V/ have been computed
at the previous iteration, the impulse .5 to be injected via
the “outside branch” is

V3= _(lel‘*‘szl"'sztl)- (8)

Once V4 is determined, the “reflected” impulse voltages
on the four branches are obtained in the same way as at all
the other nodes of the mesh. The impulse , V57 leaving the
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Fig. 4. Modeling of an electric wall by a row of boundary nodes in a
shunt-connected 2-D TLM mesh (The node voltage V, simulates the
electric field E,). (a) Electric wall bounding the field space (b) Shunted
connected 2- D TLM mesh with a row of boundary nodes along the
position of the electric wall. (¢) The branches of a boundary node.

boundary node via the outside branch is simply absorbed by
a matched load.

Note that this boundary description is a purely numerical
procedure, performed only at discrete node locations along
the boundary. The TLM mesh lines that lie in the boundary
plane (boundary branches) are not physically short-circuited
by the wall (except at the nodes). On the contrary, they form
an integral part of the TLM network and carry the tangential
fractions of the discretized Huygens waves emanating from
the boundary nodes. It can be shown easily that this bound-
ary algorithm conserves the energy in the system. The re-
flected impulse voltage , . /5 absorbed in the outside branch
at each iteration is [5]

1
k+1V3r=5(kV1’+szl+kV3’ +kV4l)_kV31‘ (9)
Replacing ;5 in the bracket by (8), we obtain
kelV3=—4V3 (10)

and since the energy content of each impulse is proportional
to the square of the voltage, the energy lost at each iteration
at a boundary node is indeed equal to the energy injected,
thus ensuring conservation.

The boundary treatment can be generalized for a 2-D
TI.M mesh which is equipped with permittivity and lossy
stubs. A boundary node in such a mesh is shown in Fig. 5.
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Fig. 5. A boundary node equipped with a permittivity and a lossy stub.

Again, the node voltage ,V, [S] must vanish at each
iteration: :
2
S=S (Vv viey, v
which yields the impulse voltage to be injected via the
“outside” branch as
Vi=— (Vi + i+ v, V3
where iji is the incident voltage on the jth branch of the
node on the boundary at the kth iteration (j=1,---,5),
y=4+y,+ 8, ¥, is the normalized characteristic admit-
tance of the permittivity stub, and g, is the normalized
characteristic admittance of loss stub. In both case, the
normalizing admittance is the characteristic admittance of
the link lines.
Since there exists a dual two-dimensional TLM model in

which the currents correspond to the electric fields, we
have (5]

kB, =1L, = Vi—Vi=0 (13)

which leads to
V3 =kV1i . (14)

Equations (12) and (14) are the new boundary descriptions
for a perfect electric wall in which the unknown incident
voltage ; Vi injected via an outside branch is determined in
terms of the incident voltages on the other branches, rather
than in terms of reflection coefficients.

B. Representation of Perfect Magnetic Walls

A similar arrangement can be made for perfect magnetic
walls, where the normal component of the electric field or
the tangential component of the magnetic field must vanish.
If the boundary C in Fig. 4 is a perfect magnetic wall, we can
set

szl =ka‘ (15)

where the currents in the TLM mesh correspond to magnetic
fields, and

Vi=—(Vi+ i+ Vi+y, V)

(16)
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Fig. 6. (a) The inferface of two regions. (b) TLM network for region 1
on the interface. (c) TLM network for region 2 on the interface.

where the voltages in the TLM mesh correspond to the
magnetic fields.

It is obvious that (15) and (16) are similar to (12) and (14),
given the dual properties of electric and magnetic walls,
Thus, only two formulas are needed in the new boundary
representation to describe both electric and magnetic walls.

C. Representation of Interfaces Between Dielectric Regions

In the case of two dielectric regions (Fig. 6), two separate
TLM networks for modeling region 1 and region 2 are
needed. The connection of the two TLM networks on the
interface should be consistent with the field boundary condi-
tions, (5) and (6). Also, we must account for the dual TLM
models.

When the electric fields are equivalent to the voltages in
the TLM mesh [3], we have

2 11,i v Iyre L1041y lysi
kEi=iViy= ;‘(le +iVa Vs HiVd 0y, sz) (17)
1

kH|t=k1]x=IlcV3l_llchi (18)

2
kB =iVoy = ;_(I%Vll +iV21 +/2<V3[ +12<V41 +2y01%V5') (19)
2

kHoy =1Ly =2Vi- Vi (20)
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where ;I is the incident voltage on branch j in the TLM
network for region n (n=1,2, and j=1,---,5) at the kth
iteration. Also, y,=4+,y, +,8, where _y, is the normal-
ized characteristic admittance of the permittivity stub for
region n, and ,g, is the normalized characteristic admit-
tance of the lossy stub of the TLM network for region 7.

In order to satisfy the continuity conditions of the tangen-
tial component for the electric fields on the interface,

Y1y =iV 2y (21)
il =rlox (22)
which leads to the following boundary representations:
Vi=(p+a)/(s+1) (23)
Vi=(sa—p)/(s+1) (24)
where
s=Y2/ 1
p= (iVli +VE+ VI +2y, /%Vst)
—s(WV3+1VE iV +1504V4)
and

1 2
q=iVi+iVi.

When the magnetic fields are equivalent to the voltage on
the TLM mesh [5],

_ _ 2 1y,i | L1704 Yyt lVi lVi) 25
kHlt_ley_y_(kV1+kV2 Vi H Vi +15,4Vs)  (25)
1

kB =il /€= (llcVal _llchi)/En (26)

2 . .
=kV2y=y—(in+iV5+iV;+iw+2yoiV;) (27)
2

B =il /€= (lchsl —I%Vli)/erZ‘ (28)

The field boundary conditions of the interface require that

ley =kV2y (29)
Wlic/€n=rla: /€2 (30)
which leads to the following:
p+q
Wi= (31)
s+ 5,
. $1q—S,p
Wi ——= (32)
S§1t+ 8,
where
S1=Y2/ ¥ 53 =€, /€y
p= (sz + ViV 42, /%Vsi)
- s1(11<V21 + VL Vi v, llchl)
and

Equations (23), (24) and (31), (32) are the new interface
conditions formulated for two adjacent dielectric regions.
Equations (23) and (24) represent the special case of (31}
and (32) when s,=1. Therefore, only two formulas are

needed to describe the interface conditions between two
dielectric regions.

So far, the new TLM boundary representations have been
derived for dielectric interfaces and for ideal electric and
magnetic walls. By following a similar procedure, it is not
difficult to obtain the new boundary formulas for the series
node network and for other kinds of boundary conditions,
for example the interface conditions between two regions
with two different permeabilities. In addition, it is expected
that the new boundary conditions can be expanded by lossy
boundaries, to three-dimensional TLM analysis, and to TLM
models used in other areas such as thermodynamics, optics,
and acoustics.

Generally speaking, even though voltage impulses are con-
tinuously injected into the boundary nodes, no additional
errors or instabilities are created, which means that the
energy remains conserved. According to the uniqueness the-
orem of electromagnetic theory, the fields in a region can be
uniquely determined by the sources inside the region and by
the fields on the boundary. Since the voltages and currents in
TLM simulate the electric and magnetic fields, the TLM
solutions can be determined uniquely if the finite sources
and boundary representations of the TLM model are known.
This ensures that the new boundary representation yields a
correct and stable solution.

III. NUMERICAL RESULTS

The new boundary description has been verified by apply-
ing it to three typical problems and comparing the results
with values obtained from the conventional TLM method
[1]-[3] using the same mesh size and number of iterations.

Fig. 7(b) gives the normalized cutoff frequencies for TM
modes in a square waveguide with sizes 10 A/, shown in Fig.
7(a). The slow-wave properties of the transmission-line ma-
trix automatically give the solutions for a medium of relative
permittivity 2 within the guide. This calculations have been
performed for 500 iterations.

Fig. 8(b) shows the normalized cutoff frequencies of the
dominant mode of the simple inhomogeneously filled wave-
guide in Fig. 8(a) computed with 100 iterations. The results
are compared with the reference values used by Johns [3].
The width of the guide ranges from 5A/ to 20A/, with a
dielectric permittivity of 2.45. The interface conditions de-
scribed in subsection II-C have been applied.

Fig. 9(b) shows the normalized dominant cutoff frequency
of the finned waveguide in Fig. 9(a) obtained with three
different methods. The analytical results were obtained with
the transverse resonance methods. In this method, the TLM
with the new boundary representation gives a more accurate
solution than the conventional TLM. This may be explained
by the fact that one node placed on the conductor edge
produces large (but not infinite) field values. This certainly
contributes to a better field description around the fin,
thereby yielding a better accuracy for parameter evaluations.

The above results show that the TLM with the new bound-
ary representation gives results similar in accuracy to those
obtained with the traditional boundary representation. Fur-
thermore, it has been verified by caiculations that the solu-
tions with the new boundary representation converge to the
exact solutions when the number of iteration is increased,
indicating that the new boundary description does not intro-
duce convergence problems, instability, or spurious solutions
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NORMALIZED CUTOFF FREQUENCY OF
HIGH ORDER MODES IN SQUARE WAVEGUIDE

Mode | Result from | Result from )} Analytical Error of Error of
this method | conventional result this method | conventional
TLM TLM
AL /) AL /A AL /A % %
TMy2 0.0788 0.0788 0.0791 0.58 0.58
TMg22 0.0999 0.0998 0.1000 0.10 0.10
T™Mgg 0.1103 0.1104 0.1118 1.54 1.25
TMzp 0.1270 0.1269 0.1273 0.39 0.47
TMj4 ‘8.1418 0.1414 0.1458 2,74 5.02
TMgs 0.1499 0.1488 0.1550 0.07 0.15
TM24 0.1558 0.1558 0.1581 1.45 1.45
TMz4 0.1760 0.1760 0.1768 0.45 0.45
TMas 0.1640 0.1841 0.1904 5.56 5.31
TMgyg4 0.1997 0.1996 0,2000 0.15 6.20
Maximum (runcation error not greater than 0.2 %
Dimensions 10 A£
®)
Fig. 7. (a) Geometry for higher order modes in a square-cross-section

waveguide. (b) Normalized cutoff frequencies of high-order modes in
the square waveguide.
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NORMALIZED CUTOFF FREQUENCIES OF QUASI - H 5 MODE
IN INHOMOGENEOUSLY FILLED RECTANGULAR CAVITY

Guide { Result from | Result from| Analytical | Maximum Maximum
width L] this method | conventional resuit truncation velocity
(31 3 error error
AL AL/ AL/} AL/A % %
5 0.0784 0.0781 0.0791 0.4 0.4
6 0.0690 0.0692 0.0693 0.6 1.6
7 0.0621 0.0625 0.0630 0.8 1.2
10 0.0518 0.0518 0.0518 1.2 0.9
20 0.0411 0.0413 0.0415 1.8 0.5
€,.= 245
®)
Fig. 8. (a) Two-dimensional inhomogeneously filled rectangi” r cavity.

(b) Normalized cutoff frequencies of quasi-H,, mode in the rectangular
cavity.
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Fig. 9. (a) Geometry of the finned waveguide. (b) Normalized cutoff
frequency of the finned waveguide.

and thus is not inferior to the traditional boundary formula-
tion,

1V. ConcLusioN

In this paper, we have presented a new TLM boundary
description where the boundaries are placed across the nodes
of the TLM network. Thus the boundary conditions are
specified in terms of field boundary conditions, rather than
in terms of reflection and transmission coefficients, which
means that the field value at the boundary can be directly
incorporated into the TLM model. This considerably in-
creases the flexibility and versatility of TLM simulations
since the new boundary description is more compatible with
methods based on partial differential equations. For exam-
ple, the TLM with the new boundary representation may be
easily adopted to solve unbounded wave problems, or it can
be combined more easily with analytical methods or the
time-domain finite-difference method, etc. Thus it facilitates
interfacing TLM with other approaches when dealing with
open field problems or with situations which are handled
more effectively with alternative methods.
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